
1

Peer-to-Peer Botnets: Analysis and

Detection

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

 Master of Science

Submitted By:

Jeet Morparia

December 2008

2

© 2008

Jeet Morparia

ALL RIGHTS RESERVED

3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp

 Dr. Robert Chun

Dr. Teng Moh

 APPROVED FOR THE UNIVERSITY

4

Abstract

Attacks such as spamming, distributed denial of service and phishing have become

commonplace on the Internet. In the past, attackers would use high bandwidth Internet

connection servers to accomplish their tasks. Since desktop users today have high-speed

Internet connections, attackers infect users’ desktops and harness their computing power

to perform malicious activities over the Internet. As attackers develop new methods to

attack from distributed locations as well as avoid being detected, there is a need to

develop efficient methods to detect and mitigate this epidemic of infection of hosts on the

network.

In this project, we aim to analyze the peer-to-peer botnet binary known as

Trojan.Peacomm and its variants. Reverse engineering techniques have been used to

disassemble the binary and to identify the techniques that the botnet binary uses to spread

itself and to make its detection difficult by current scanners. In the process, we establish a

framework and methods for malware analysis, which could be used to analyze other bot

binaries and malware.

Based on our findings we discuss a few techniques to detect and shut down botnets and

demonstrated an attack scenario used to disrupt their activity.

5

Table of Contents

1 Introduction ... 7

2 Botnets ... 10

2.1 Life Cycle of a Botnet ... 10

2.2 Actions and Capabilities of Botnets .. 12

2.3 Botnet Detection Strategies ... 14

3 P2P Systems .. 16

3.1 Kademlia- A P2P protocol .. 18

4 PE File ... 21

4.1 Layout.. 21

4.2 Packing .. 23

5 Reverse Engineering of Trojan.Peacomm ... 23

5.1 OllyDbg ... 24

5.2 IDA Pro ... 24

5.3 Black Boxing or Dynamic Analysis .. 26

5.3.1 PE Dump Analysis .. 27

5.3.2 Unpacking ... 28

5.3.3 Checking any resources it contains ... 29

5.3.4 Extracting embedded resources ... 29

5.3.5 Running and monitoring the actual threat in a controlled environment 30

5.3.6 Running the threat using a fake DNS server: .. 32

5.4 White Boxing or Static analysis .. 32

5.4.1 Emulation evading technique .. 35

5.4.2 Decryption Loop ... 36

5.4.3 Dynamic process calling ... 37

5.4.4 Finding a legitimate process to inject .. 40

5.4.5 Allocating Virtual Memory ... 41

5.4.6 Analyzing injected code .. 42

5.4.7 Other tricks used.. 43

6 Detection and Attacking strategies .. 44

6.1 Index poisoning attack .. 44

6.2 Sybil attack .. 46

7 Conclusion:.. 47

8 References ... 48

6

List of Figures

Figure 1: Life Cycle of Botnets ... 10

Figure 2: Actions and capabilities of a botnet ... 12

Figure 3: Resource Requirements and Metrics ... 13

Figure 4: Evolution Peer to Peer Protocols and Bots .. 17

Figure 5: K-Buckets .. 19

Figure 6: PE File Format ... 22

Figure 8: PE Dump showing PE File Information .. 28

Figure 9: Peer List File .. 31

Figure 10: Decryption Loop of the Packer .. 33

Figure 12: Crashing the Emulator ... 35

Figure 13: Decryption Loop .. 36

Figure 14: Dynamic Calling of Processes (Making Static Analysis Difficult) 38

Figure 15: Finding the Process: explorer.exe .. 40

Figure 16: Allocation of Memory in Virtual Address Space .. 41

Figure 17: Snapshot of Index Poisoning Attack1.. 45

Figure 18: Snapshot of Index Poisoning Attack2.. 46

7

1 Introduction

A botnet consists of a network of compromised computers controlled by an attacker or

botmaster. The term botnet is derived from software robots, or bots [6]. These bots can

be controlled remotely to perform large scale distributed denial of service (DDoS)

attacks, send spam, deliver Trojans, send phishing emails, distribute copyrighted media

or conduct other illegal activities [5].

The unique feature of a botnet is its controlled communication network [2]. Most bots

have a centralized architecture. i.e., they are connected to a command and control

(C&C) server. In such an architecture, the C&C server acts as a central point of failure

for the botnet. That is, the entire botnet can be shutdown if the defender captures the

C&C server [4]

Bot masters are now shifting to different architectures to avoid this weakness. In a peer-

to- peer (P2P) architecture a node can act as a client as well as a server and there is no

centralized point for command and control [1]. A P2P botnet requires little or no formal

coordination and even if a node is taken offline by the defender, the network still remains

under the control of the attacker. Thus P2P bots have become the choice of architecture

for bot masters [3].

Botnets are constantly evolving and are advancing towards more complex functionality

and destructive capabilities. Until recently, the term botnet generally referred to a

collection of IRC trojans, but today it can be any sophisticated network of malicious bots

8

[3]. A considerable amount of work has been done by bot writers in the following 2

areas:

• Design of new bot functionalities

In order to make bots stealthier and faster for propagation, bot writers have kept

on adding newer functionalities to their existing bots. The trend shows that older

bots were merely used for DDos (Distributed denial of service) attacks whereas

newer bots have functionalities to send spams, sniff passwords, gather email

addresses and credit card credentials.

• Design of new C&C strategy

Bot masters are concerned about the underlying network topology used therein. In

C&C architecture, the bot-servers provide a central point of failure for the bots.

Thus, a bot having millions of nodes can fail if the server crashes or is attacked by

some defender. In this case, the bot master fails to communicate and pass on its

commands to its zombies (compromised hosts).

Hence, a network architecture

which is decentralized, distributed and has no central point of control is better and

is perfect for the purpose of operating a botnet. P2P architecture is decentralized,

distributed and does not have a central point of control, thus, meeting the above

mentioned criteria of a desirable network and becoming an obvious choice of the

bot masters.

The aim of the project is to find ways to detect and mitigate the propagation of such

botnets. But, before moving on to explore the techniques of detecting botnets and

9

mitigating their propagation, we need to first understand the history of botnets and their

method of operation. Thus, the first part of the report will cover the history of botnets and

the way in which they work. Once this basic understanding of botnets is captured, we

will next move on to focus on P2P systems, particularly on Kademlia [11], which is used

as a protocol by many botnets. Further, we will briefly describe the PE file format and a

detailed procedure to analyze a bot. Finally, we will showcase the entire understanding of

botnets and P2P systems through a case study of one such P2P bot known as

Trojan.Peacomm and present a method to disrupt its activity.

10

2 Botnets

2.1 Life Cycle of a Botnet

Figure 1: Life Cycle of Botnets [7]

Fig:1 shows a life cycle of a botnet. The steps mentioned below indicate how a botnet

spreads its infection and propagates:

1. The bot herder (bot-master) uses a zombie (exploit machine) to send primary

infection to the victim machine. This can be done in form of email attachments.

2. Victim downloads the attachment and installs it on its machine by which it gets

compromised.

3. The malicious bot program which has been installed onto victim's machine opens

network ports enabling downloading of the secondary injection which could be a

spamming program, password sniffer or tool for further spreading the botnet. The

primary injection which installs the malicious program on the victim's machine

11

has a URL (Uniform resource locator) address from which secondary infection

can be downloaded.

4. Through the open ports the victim machine downloads the secondary infection

through which the machine becomes the part of the botnet.

5. The victim machine is now programmed to periodically send its status

information to the bot controller (generally an IRC server).

6. Controller sends a reply back to the victim. It can also pass any commands it has

in queue for the victim which have been given to it by the bot-master.

7. Bot herder sends commands to the controller, which it passes to all the victim

nodes. A botnet could have millions of nodes in its network.

Fig:1 indicates the bot controller as the central point from where all command and control

takes place. This is the reason why it is also called a C&C (Command and Control)

server. Though, it becomes easy to control all zombie nodes, it also results in being a

central point of failure for the network. A method to shut down such a botnet is to attack

its server (bot controller). Once the server is brought down, the bot master will lose

control over all of its nodes and botnet will be impaired. Bot masters also try to hijack

zombie nodes from other botnets by capturing its controller. To have multiple number of

controllers under them is advantageous because if one controller fails, only a section of

zombies is lost. They could still expand the botnet using the existing unaffected

controllers. However, the central point of failure is the main reason for bot masters to

search for different techniques to command and control their nodes.

12

2.2 Actions and Capabilities of Botnets

Figure 2: Actions and capabilities of a botnet

Fig:2 shows the general actions and capabilities of a botnet. The solid boxes indicate

mandatory action whereas dotted boxes indicate optional actions. As shown, for infection

to propagate, local system infection is mandatory. Generally, all botnets have capabilities

of persistence, stealth and remote access. They can reside on the victim host by hiding

their processes or frequently changing the names of the processes to avoid detection.

Some advanced botnets also have applications to configure Operating systems known as

rootkits. Rootkits can tweak the OS to hide their processes and leave no traces of their

existence. Remote access is for downloading the secondary infection from a remote URL

and spreading its infection amongst other nodes. Additional capabilities include

password, data sniffing and key-logging. Self replication is an optional function in a

13

botnet. Self replication means it can pass on its infection to other nodes. It can be done in

2 ways:

1. Manually: With the help of the user. E.g.: user forwards a malicious attachment

to other users. User shares infected files with other users. Transferring files over a

network etc.

2. Automatically: By downloading secondary infection from a remote URL which

has a function of self replication in it. For this to happen, the infection should

have target selection and scanning engine. A foolproof algorithm which generates

nearest random IP addresses to infect is a must.

Figure 3: Resource Requirements and Metrics [1]

Fig:3 enlists the basic resources required by a botnet. The figure also lists the metrics for

each resource which can be used to characterize botnets.

14

2.3 Botnet Detection Strategies

We categorized botnet detection strategies broadly into 2 types:

1. Host based detection: Host based detection pertains to detecting bot activities on a

single machine. Some typical symptoms through which botnets can be detected via

host based detection are:

• Infection detection by antivirus. This may or may not be a botnet activity but

certainly can be a starting point for infection. Many infections might not even be

detected.

• Slowing of the machine. Again, this can happen due to variety of reasons but if

this is a sudden change, one must check for spyware/adware on the system using

some scanner.

• Detection of rookits on the machine.

• Modification of Windows host / system files.

• Random popups indicating adware presence on the machine which can also be a

form of botnet click fraud activity.

• If your DNS resolution server is not your ISP's or company's server, then it might

have been replaced by a shady source and can forward your requests to shady

URLs.

2. Network based detection: Network based detection pertains to detecting bot

activities on a network. Some typical symptoms through which botnets can be

detected via network based detection are:

15

• One can sniff IRC traffic across commonly used IRC (Internet Relay Chat) ports.

Most common ports used for IRC is port 6667. Many bot masters today use non

standard IRC ports for communication to avoid detection. So, observing the

suspicious outbound connections on non standard ports would be a good idea for

detecting bot activities. Also, the IRC traffic being generally in plain text, sniffing

for known IRC commands and keywords will help detecting a botnet activity.

• By maintaining a check-list of known C&C servers, one can check for outbound

requests to those servers.

• If many machines on the network are accessing same server at once, bot masters

keep changing their DNS servers to shift their location.

• Keeping a check on ports 135, 139, 445 (ports for windows file sharing) may also

help detect presence of bots. A heavy traffic over these ports, is an indication of

some bot activity.

• Huge amount of SMTP out bound traffic, especially from servers which are not

supposed to be SMTP servers indicates infection of malware spam in the network.

16

3 P2P Systems

A peer-to-peer (or "P2P", or, rarely, "PtP") computer network exploits diverse

connectivity between participants in a network and the cumulative bandwidth of network

participants rather than conventional centralized resources where a relatively low number

of servers provide the core value to a service or application [8].

In a P2P network, each node provides bandwidth, storage and computing power. Bot

masters take following advantages of P2P network: every node provides resources such

as CPU cycles, internet bandwidth and storage space which can be harnessed by the bot

masters to perform DDos, spamming attacks. This requires large amount of CPU power.

Additionally, more the number of nodes mean more power and bandwidth available to

bot masters. However, this may not hold true for a client server architecture system. In a

client-server model, adding nodes could degrade the performance of the server and

slower the data transfer rates to and from the peers. P2P networks are widely used for file

sharing and video streaming and comprises of most of the Internet traffic today [8].

Before discussing about the P2P network “Kademlia” which is used in this project, let us

review some of the terms related to a P2P system.

• Overlay network: A computer network built on top of another network [9]. P2P

networks are overlay networks on top of the Internet. If a node has knowledge

about some other node in a P2P network, there is a direct edge between the two in

the overlay network.

17

• Unstructured P2P networks: Such type of a network is formed when peer

selection is done randomly. There is no specific relation between the peer and the

data that is to be searched. If a particular data has to be searched, the query has to

be flooded throughout the network. This may give good results for a popular

content, but for content that is shared by only a few peers, the result is unlikely to

be positive. Flooding also creates increasing traffic over the network reducing its

searching efficiency. E.g. Guntella, FastTrack [8].

• Structured P2P networks: They have a global protocol by which every content

is associated with the peer in which it resides. Thus even the rarest content can be

searched efficiently. Distributed Hash tables (DHTs) is the most commonly used

structured P2P network, which is similar to a Hash Table where an IP address of

the peer is stored corresponding to the value of the content (file). E.g.: Chord,

Pastry, Tapestry, Kademlia.

Figure 4: Evolution Peer to Peer Protocols and Bots [1]

18

Fig:4 shows how P2P networks evolved over the years. One of the first well

known bot which was non malicious is EggDrop, an IRC based bot. It was

developed with the intention to enhance automation over the internet which

includes playing games, legal file transfers and automated channel admin controls

[1]. Napster was the first P2P centralized system. It allowed users to find music

with other peers on the network [1]. A centralized server was used to save indexes

of the files on the user’s computer which enabled other users to search for it and

download the media from the user’s machine. It was shut down because of the

illegal trading of music on the Internet. This promoted the idea of having

decentralized networks to evade authorities. Guntella was the first P2P

decentralized protocol. Protocols such as Kademlia, Chord and Tapestry made use

of distributed hash tables (DHT) for improving searching efficiency. Agobot

started the trend of malicious bots and became most widespread because of its

design and modular code base [1]. Later Trojan.Peacomm emerged as the most

destructive bot and it was named Storm Worm.

3.1 Kademlia- A P2P protocol

The working of the Kademlia protocol is very crucial for this project as one of the attacks

on Trojan.Peacomm, Index poisoning attack is directly based on the disrupting the P2P

system rather than attacking the bot itself.

Kademlia uses distributed Hash Tables for decentralized peer to peer computer network.

UDP packets are exchanged between the peers to transmit and receive data. Each UDP

packet contains a triplet of <IP address, UDP port, Node ID>. An overlay network is

19

formed by the participating nodes. Every node is assigned a 160 bit node ID (not

necessarily unique). To publish and find <key,value> pairs, Kademlia relies on a notion

of distance between two identifiers. Keys too are 160 bit identifiers, where key =

hash(file) and value = IP address of the file location. Distance is calculated as the XOR

value of the node ids. Each peer contains a data structure called K-bucket which store

<key, value> pairs of the ids at the distance of 2
i
 and 2

i+1
 from it. Fig:5 gives us the

visualization of how the K-bucket should look like.

Figure 5: K-Buckets

20

The algorithm for updating the K-bucket is as follows [11]:

Algorithm:

Initial state of the peer:

x(node id) : = node id;

status : = sleep;

On receiving of (IP address; UDP port; Node ID (y)) from some node ni

status : = awake;

Calculate the d(x, y);

Choose α values of triplets whose distance is the least from its k-buckets;

forward triplet to node ni;

If d(x, y) = 0 then //node already present in the peers k-bucket

Move the corresponding triplet to the tail of the k-bucket;

terminate;

else

Is k-bucket full ? then

Remove least recently seen triplet from k-bucket;

Add the triplet to the head of the k-bucket;

__

The algorithm can be exploited so that the values in the K-buckets are poisoned with fake

entries, i.e. Entries of legitimate files pointing to shady sources (IP addresses). The

details of it will be described in later sections.

21

4 PE File

In order to reverse engineer a binary, it is very essential to understand the PE file format

file format for executables, object code, and DLLs, used in 32-bit and 64-bit versions of

Windows operating systems [12]. Packing and unpacking of executable files are common

practices while reverse engineering a binary. In the following sections we have covered

some basic knowledge required to reverse engineering a PE file.

4.1 Layout

A PE file is divided into different sections and headers. A linker maps them into the

memory. Fig:6 represents how a PE file appears on the disk. Its headers and the sections

contain all the information to map it to the virtual memory.

From bottom, i.e. offset 0, starts the PE header. Executable files can be identified as those

files whose header starts with “MZ”. While reverse engineering a malicious file, we

should always look for the header to check if the file is a valid executable or a corrupt

file. Also a valid file would have PE signature: “PE/0/0” at the location specified on

offset 0x3C of the file.

The image file header and the optional headers contain information about target machines

of the executable file, number of sections, time and date stamp, number of symbols,

address of the entry point in the code and the image base.

22

Figure 6: PE File Format [13]

The major sections in a PE file format are as follows:

The .text section contains the code in the file. For a C++ compiled file, it is referred to as

.CODE section. Usually the entry point in the file lies in this section [13].

A .data section consists of all initialized variables (global and static) at compile time.

The local variables are all in the .tls (thread local storage) section. All the exports

contained in the file are stored in .edata section. Exports refer to the functions and data,

that the file contains, which are used by external modules.

.idata section also known as the import table contains the table of addresses of all the

imports to the file so that they can be mapped in the memory. It contains information

about the functions and modules imported from external dll files [13].

.reloc section contains information about the base adjustments that need to be performed

if the loader cannot load the file in its preferred address location. If no base adjustments

are required, then this section is neglected.

23

.rsrc section (not shown in the diagram) contains all the resources of the file. In the PE

file format these resources are maintained in a hierarchical fashion in the form of

directories. The top level directory is found at the beginning of the .rsrc section. The sub

directories of the top level directory depict different types of resources such as dialogues,

menus and string tables. For each resource there will be individual sub directories. Each

sub directories in turn will have ID subdirectories, having unique IDs for each resource

[13].

4.2 Packing

Packing also known as executable compression is any means of compressing an

executable file and combining the compressed data with the decompression code it needs

into a single executable [22]. Packing is often used to hamper reverse engineering or to

obfuscate the contents of the file. For e.g.: to hide viruses and worms from antivirus

scanners. It is not impossible to reverse engineer a file which is packed, but it increases

the cost of its analyses. While packed files require less storage space they have a slower

loading time since the original file has to be extracted before it is executed.

5 Reverse Engineering of Trojan.Peacomm

The results and findings in this section are gathered by reverse engineering the bot

binaries of Peacomm and its variants. Herein we explain the detailed procedure used to

analyze Peacomm. Since all variants have some common behavior, a variant of the bot:

i.e. PeacommD was used as the base file for our analyses. For convenience of our

analysis and explanation we performed black boxing or dynamic analysis on PeacommD

and white boxing or static analysis on Peacomm and its variants (Peacomm.exe,

24

PeacommD.exe, and PeacommC.exe). Black boxing and white boxing are explained in

detail in the following sections. We have chosen important sections of code to be shown

in this report which include: how it obfuscates the code, tricks used to hamper analyses

performed on it, decryption loops used in different variants and code injections in a

legitimate process to avoid detection. Some sophisticated tools for reverse engineering

are IDA Pro and OllyDebug. These were the tools used for majority of our analysis. All

tools used for analysis are described in the subsequent sections.

5.1 OllyDbg

OllyDbg is a 32-bit assembler level analyzing debugger for Microsoft
®

 Windows
®

. It is

used for binary code analysis especially when source is unavailable [14]. Some of its

features are:

• It can recognize procedures, API calls and most of the C functions.

• Finds references to memory and strings.

• Can debug Dlls too.

• Any running program can be attached and debugged.

• Many third party applications and plug-ins are available.

• Can update and patch an executable.

5.2 IDA Pro

IDA Pro (Interactive Disassembler) is a commercial disassembler used for reverse

engineering [15]. It is a prime tool for assembly code analysis because of the following

reasons:

• Supports large number of executable formats and Operating Systems.

25

• Allows naming, commenting, structure creation.

• Analyses the assembly code and separates them into sections. It also recognized

common used API calls.

• Supports scripting for additional modifications to the generated code. E.g.

scripting for decrypting part/parts of a file.

• Provides graphical view of the file for better understanding of function calls and

loops.

26

Fig:7 represents our method of analyzing Trojan.Peacomm. It is broadly classified as

black boxing and white boxing. In black boxing we used various tool and techniques to

understand the behavior of the threat. While performing white boxing; debugging and

code analysis were performed using tools OllyDbg and IDA Pro respectively.

5.3 Black Boxing or Dynamic Analysis

Black box analyses involve analyzing the file without looking at the actual code or

assembly of the file. We try to understand the behavior of the file by actually running it in

a controlled environment.

BLACK BOXING

PE Dump

Unpacking

Resource Hacker

Extracting

Embedded Files

Run Threat in a

Controlled

Environment and

Monitor

Fake DNS Server

WHITE BOXING

DEBUGGING

OllyDbg

CODE

ANALYSIS

IDA Pro

Figure 7: Flow Chart indicating Summary of Analysis

27

5.3.1 PE Dump Analysis

PE Dump is a tool which shows the structure of the file. We used it in order to check

whether the file is a valid PE file. It shows all the sections in a PE file. Also an internal

tool which shows any strings and appended data in a PE file if any was used. One can

know from a glance whether there is appended data to the file or is there another file

embedded inside the resource section of the file. These are common techniques used by

trojans to place their code in a file. Appended data means the actual malicious code of the

file which lies after the object end in a PE file. The entry point of the original code

consists of a jump statement to the appended code so that malicious code can execute

first and jump back to the legitimate or extra code kept to deceive virus scanners. We

opened the PeacommD file in PE Dump for analysis. Our observations are as below:

28

Figure 8: PE Dump showing PE File Information

No appended data was found. Any kind of strings (web addresses, IP addresses, known

APIs used by malicious files) in a file are useful in analyses of a file. The internal tool

extracted all ASCII strings in the file. Strings did not seem to make sense. This is an

indication that the file is packed or obfuscated.

5.3.2 Unpacking

Packers are commonly used for code obfuscation or compression. Trojans commonly use

them to avoid signature detection. We used custom built tool to try and unpack the file.

29

This tool contains un-packers for all known packers. It finds signatures of known packers

in the file and applies corresponding unpacking function on it.

• Unpacking was unsuccessful.

• Conclusion: A custom built packer is used. Peacomm avoids using known

packers to avoid its detection.

An emulator was used to emulate the threat. It creates a limited user account where the

threat cannot write files and has no network privileges. We ran the PeacommD file in the

emulator. It collects the memory dump of the emulation in a file which we can analyze.

Emulation fails. There is a possible use of emulation evading techniques used by the

Trojan. It is described in section: 5.4.1.

5.3.3 Checking any resources it contains

Resources in a file are valuable information one can get about the file. These resources

are placed in the .rsrc section of the PE file as explained in the section 4.1. It can give us

version information, icons and image files embed in the PE file. Often malicious files

have embedded dlls and executable files in them. Resource hacker, a free tool, was used

for this purpose. No resources were found. Since the file is packed, Resource hacker was

unable to find the resource information from the file.

5.3.4 Extracting embedded resources

A custom tool was used which extracts dlls and exe files from the original file

PeacommD, if present. No files were extracted again because it is packed.

30

5.3.5 Running and monitoring the actual threat in a controlled
environment

A custom tool was used for this purpose. The tool is similar to the free tool “HijackThis”

[23] by security company TrendMicro. It monitors all API calls, registry creations and

modifications, creation and deletion of files and folders and processes and dlls utilization

by the threat.

The observations were:

• It copies itself to msvupdater.exe in c:\windows directory.

• Creates a sub key to auto run on boot:

HKEY_CURRENT_USER\Microsoft\Windows\CurrentVersion\Run\"msvupdate

r" = "%Windir%\msvupdater.exe"

• Msvupdater.exe creates processes netsh.exe (to monitor and control machine from

command prompt)

• Netsh.exe sets msvupdater.exe as an authorized application and changed firewall

settings. The following command was used to do that.

o netsh firewall set allowedprogram "C:\\WINDOWS\\msvupdater.exe\"

enable

o The following Registry entry was created:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedA

ccess\Parameters\FirewallPolicy\StandardProfile\AuthorizedApplications\List

\C:\WINDOWS\msvupdater.exe

• Uses common APIs to connect to the internet: wsaStartup(), Socket(), Bind().

Using these APIs, it connects to massive number if peers creating different thread

for each connection.

31

• Runs these commands to synchronize time:

o WinExec “w32tm.exe /config /syncfromflags:manual

/manualpeerlist:time.windows.com,time.nist.gov”

o WinExec “w32tm.exe /config /update”

• Spreads by copying itself to local and remote drives by searching for .exe files in

the folder. If a .exe file is present it copies itself to that folder

• Creates a key value for a unique ID of the node on a P2P network. Sets the key to

0x1F6F6DD0= (527396304)10

HKEY_LOCAL_MACHINE\Microsoft\Windows\ITStorage\Finders\ID

• Creates a file named msvupdater.config in %Windir%\ which contains

information about the peers to connect to.

Figure 9: Peer List File

The file contains the unique ID of the computer on the network. The registry entry

for it was set as explained in the previous point. It contains the port number to use

to connect to other peers and lastly the list of peers in the format:

<128 bit md4 hash>=<IP address><Port><2 byte flag>

32

It then creates multiple threads, each establishing a connection to a single peer.

The list keeps on updating as more number of machines get infected.

5.3.6 Running the threat using a fake DNS server:

The DNS server was set to 127.0.0.1. Thus all the outbound requests are redirected it to

the local host at. We set up a fake web-server at the local host to monitor its requests and

serve any files it requests.

Observations:

1. Request caught: GET /getbackup.php HTTP/1.1

Host name: cadeaux-avenue.cn (which is a malicious domain name)

2. Accesses host time.windows.com : for time synchronization.

5.4 White Boxing or Static analysis

White box analysis involves analysis of actual code. Since we have the executable file of

the Trojan and not the source code, we have to reverse engineer it and analyze its

assembly code.

33

From Black Box analysis we know that the file is packed. Viewing it in IDA-Pro:

Figure 10: Decryption Loop of the Packer

We have marked the assembly code with comments for better understanding. Most

packers have their decryption loop at the entry point of the code. Here it starts at

0x412AF4. The instruction mov eax,[esi] at 0x412AF4 shows that register ESI contains

the starting address of the encrypted code. To know what ESI contains we need to know

the value of ECX at 0x412AE3. Since contents of EBX were exchanged with EBX at

0x412AE0 xchg ebx,ecx, we want to know contents of EBX. Now at the start of the code

Decryption Loop

Division Loop

34

EAX is 0 and any stack variables are FFFFFFFF. This is true for all NT based systems.

Win9x systems have EAX set to entry point at the start of the code. So this file would not

run on a Win9x system. There is a division loop just before the decryption loop, which

gives the value 0x426000 to EBX at 0x412ADD. The value 0x426000 is passed to ESI at

the start of the decryption loop. We can run the code in a debugger till the end of the

decrypt loop and dump the memory starting from 0x426000 into a file. Since OllyDbg is

good for debugging and IDA Pro is better for code analysis we use them for their

respective purposes. Further, we need to load this additional .bin file, dumped using

OllyDbg into IDA Pro where Peacomm file is already open. Fig:11 shows how to do that.

We see, at 412B19, that the function returns to address 0x426000 which is the real start

of the file.

We set the loading segment as 0x4260 and offset as 0x0 since we want to load the binary

file at 0x0042600 in the existing IDA file. Thus, we can see the decrypted instructions on

those locations instead of the encrypted data, which is easy for analysis.

Figure 11: Add a Binary File in IDA Pro

35

5.4.1 Emulation evading technique

Fig:12 shows the code at entry point of a Peacomm variant. We saw some simple

techniques to trick the emulator and make it crash

Figure 12: Crashing the Emulator

One can see the API calls to Windows functions, GetModuleHandleV and

GetProcAddress. GetModuleHandleV returns the handle to the specified module [16].

We see a null being pushed just before the call. This means the module name parameter

passed to the function GetModuleHandleV is null. According to MSDN, it should return

its own handle. Thus register EAX will contain handle of the file itself.

GetProcAddress function returns the address of a function in a file if passed its name as a

string. We see a string named “sfdbee” passed to the function. Thus, it will return the

offset of that function in the file. On jump, it will go to the offset address.

Point to be noted here: only jump statement could have been used to go to the ‘sfdbee’

function. A ‘jmp’ statement is easily emulated by the emulators and a virus can then be

analyzed easily. There are too many APIs for emulators to handle. Many APIs cannot be

36

resolved by the emulators. Many current emulators cannot resolve GetProcAddress. Also,

by using GetProcAddress function, it has to evaluate the offset of the function at runtime,

which emulators cannot perform, thus evading analyses by emulators.

5.4.2 Decryption Loop

The purpose of the another piece of code which is in the “sfdbee” function is to XORs

32000 bytes(c80 bytes) from 0x00408000 with a 16 byte key at address: 0x00402018.

Figure 13: Decryption Loop

At the start of the loop, values for some counters and temporary variables are as follows:

ctr_8= 0, ctr_4= 0 and var_10= 0x408000. Thus, XOR is the function for decryption

which is at 0x004010A7. ECX = 0x402018, which is where the decryption key is placed.

Decryption

Function

Decryption

Key

37

In every loop counters ctr_8, ctr_4 are incremented by 1 and multiplied by 4 while

performing an XOR so that every 4 bytes of data are XORed each time. The loop

continues till counter variable ctr_limit_C= 0xC80 which is 32000 bytes.

We have made some observations as to how different variants of Peacomm behave.

These are some common observations.

5.4.3 Dynamic process calling

In Fig:14 below one can see many calls to GetProcAddress function. This function

returns the handle to the function whose name is passed in ASCII as a parameter to it.

38

Figure 14: Dynamic Calling of Processes (Making Static Analysis Difficult)

We can see a call at 0x402CC2 to a function which we named as decode_strings, since

after returning from that function all the encrypted strings in the code can be seen in clear

text. We ran this piece of code in OllyDbg to confirm this. There is a certain memory

range in the code where all the strings used in the file are kept encrypted so that, once

39

decrypted, they are used as parameters to the function GetProcAddress. In Fig:13 , the

circled strings are the decrypted strings.

The process CreateToolHelp32Snapshot at 0x402CE2, takes a snapshot of the specified

process and heaps, modules and threads used by this process [17]. The code proceeds to

calls the functions Process32First, Process32Next and OpenProcess and at address

0x402D29 we have a decrypted string “explorer.exe”. Process32First gives the

information about the first process encountered in system snapshot [18]. Process32Next

retrieves the information about the next process in the system snapshot [19].

OpenProcess opens a local process object for the specified process Id with desired

privileges [20]. This indicates the program is trying to search the process “explorer.exe”

in the snapshot and inject malicious code into its memory range as we have explained in

the following sections.

40

5.4.4 Finding a legitimate process to inject

Figure 15: Finding the Process: explorer.exe

The Fig:15 shows the loop to find the process: explorer.exe in the snapshot taken by the

Trojan. At address 0x402D5E, Process32Next is called. It gets the next process in the

snapshot of the process taken earlier. Next piece of code shown runs a loop to check if

the next process is explorer.exe. When it finds explorer.exe, it gets its handle and opens

its object.

Check if next

process is

explorer.exe

Get handle and

open an object of

explorer.exe

41

5.4.5 Allocating Virtual Memory

Figure 16: Allocation of Memory in Virtual Address Space

After getting the handle and creating an object for the process explorer.exe, it writes its

malicious code in the virtual memory space of explorer.exe. ZWriteVirtualMemory

function writes the memory and VirtualAlloc function allocates it and returns a handle to

the memory allocated. From this point debugger will have no control over the code since

the process will run in an external module which is not part of this process.

42

It is important to note, why this activity was not registered while black-boxing. The

reason is: the worm allocated its memory to an already running legitimate process. Most

scanners only hook API calls of new processes created while executing a threat and not

the processes already running. The worm writer has intentionally injected its code into a

legitimate process to avoid detection.

5.4.6 Analyzing injected code

There is a way to analyze injected code too. We have the handle to the Allocated space in

the Virtual memory, and we also know the process name to which the code is injected.

1) We can open another instance of OllyDbg and do File�Attach. This would give us the

list of current processes running. Choose explorer.exe from the list. In the mean time,

we can let the earlier instance of OllyDbg with Peacomm run and let it execute the

process explorer.exe. In the OllyDbg instance, where explorer.exe is running, we can

put a breakpoint at the starting address of the virtual address of the allocated space.

Thus we get the starting point of the injected code in the virtual memory so we can

analyze it further.

2) Another method used, was to capture memory ranges of all the threads and processes

running for explorer.exe. This was done by a custom built tool. This tool accepts a

running process name as its input. It then gathers information of all the processes

calling that running process along with the information of its memory ranges and

access rights assigned to those ranges. When explorer.exe was given as an input to the

tool, we had the list of processes accessing it. From the list it was easy to pick up the

memory ranges which were being accessed by Peacomm. We dumped those memory

ranges using a memory dump tool.

43

5.4.7 Other tricks used

1) Some variants of Peacomm terminated their process quickly so that the memory

dump of it could not be taken. There are tools available which can run a threat in a

recursive loop, so that they can be in the memory and their dump can be taken easily.

2) Most worms connect to some shady URL to download their payload. A DNS hooking

tool was used on port 80 to divert its request to 127.0.0.1 which is the local host, to

capture its request and to run it in a safe environment.

Some variants also use IP addresses instead of URLs, to bypass the DNS server.

Since DNS only hooks all URL requests made and returns its IP address. In this case

Microsoft loop-back adapter was installed. It creates a virtual network adaptor and

loops any calls to the IP addresses to local host [21].

44

6 Detection and Attacking strategies

6.1 Index poisoning attack

This form of attack is an attack on the P2P system rather than the bot itself. It works in

the following way:

• We generate hash of the keyword to be searched (known keyword used by bots).

• Then generate a random identifier not related to any file.

• Publish <key, value> pair where key = hash value of keyword, value = random id.

• Now, when there is a request which corresponds to that keyword, it is routed to

the random id which does not exist and hence malicious content is not

downloaded by the host sending the query.

• Second way to do it is to choose a duplicate id; fill its <key, value> pairs with

fake entries; where values correspond to duplicate ids. Doing this, malicious ids

can be re-routed to legitimate ids.

A demo implementation of Index poisoning attack has been demonstrated below. The

implementation contained 32 peers, each having data structure as shown on Fig:5. The

values of node 13 are as seen in Fig:17. Key=9 has a value 234 and nearest node to 9 is

node 1 which is stored in k-bucket.

45

Figure 17: Snapshot of Index Poisoning Attack1

Next step is to generate a duplicate node 13, and inserting fake <key,values> pairs in it.

Performing search routing through this node will generate different result as before i.e.

567 in Fig:18 instead of 234 in Fig:17.

The implementation is done in JR programming language which is an extension of

JAVA, specially meant for distributed computing and simulations.

46

Figure 18: Snapshot of Index Poisoning Attack2

6.2 Sybil attack

In this attack, an attacker can create large number of counterfeit nodes and can divert the

queries of the legitimate nodes to the nodes they want. This method can be taken

advantage of by us to disrupt the botnet activity. But doing this may also affect other

legitimate traffic and queries. Clever bot masters may use Certificates to authenticate a

peer which wants to enter the network. This will prevent other nodes to enter the system.

47

7 Conclusion:

Through this paper, we have explained the working of a P2P botnet. Although

architecturally it is different than the conventional command and control botnets, their

purposes are similar i.e. to share information amongst nodes, to download secondary

injections and use individual nodes as attack vectors. P2P botnets are difficult to shut-

down because they do not have a single point of failure like the C&C botnets.

Our study on one such P2P bot binary, Trojan.Peacomm, demonstrated how such bots

spread infection, self-replicate, download rest of their body and maintain stealth to avoid

detection. The reverse engineering techniques, black boxing and white boxing analysis

used in a systematic manner laid a framework for analyzing future bot binaries and

malwares.

We have presented strategies to attack the network in order to shut down the malicious

activities of the bots. We also suggested detection strategies naming Host based detection

and Network based detection so that its infection can be mitigated.

As part of future work of the analysis presented in this paper, we may consider detecting

botnet activity on a host, find the list of peers it connects to before it joins the P2P

network and automate an attack on the Kademlia network using that peer list. For this we

would simulate a network on the OverSim simulator [10] which can simulate thousands

of Kademlia nodes. Using the simulator it is possible to define malicious behavior and

the probability of malicious nodes on the network.

48

8 References

[1] David Dagon, Julian Grizzard, Vikram Sharma, Chris Nunnery, Brent Kang, “Peer-to-

Peer Botnets: Overview and Case Study”,

http://www.usenix.org/events/hotbots07/tech/full_papers/grizzard/grizzard.pdf

[2] Ping Wang, sherri Sparks, Cliff C. Zou, “An Advanced Hybrid Peer-to-Peer Botnet”,

http://www.usenix.org/events/hotbots07/tech/full_papers/wang/wang.pdf

[3] Elia Florio, Mircea Ciubotariu, Symantec Security Response, “Peerbot: Catch me if

you can”, http://www.symantec.com/avcenter/reference/peerbot.catch.me.if.you.can.pdf

[4] André Fucs, Augusto Paes de Barros, Victor Pereira, “New botnets trends and

threats”, http://www.blackhat.com/presentations/bh-europe-07/Fucs-Paes-de-Barros-

Pereira/Whitepaper/bh-eu-07-barros-WP.pdf

[5] Anestis Karasaridis, Brian Rexroad, David Hoeflin, “Wide-scale Botnet Detection

and Characterization”,

http://www.usenix.org/events/hotbots07/tech/full_papers/karasaridis/karasaridis.pdf

[6] http://en.wikipedia.org/wiki/Botnets

[7] http://images.ientrymail.com/securitypronews/botnet_lifecycle.jpg

[8] http://en.wikipedia.org/wiki/Peer-to-peer

[9] http://en.wikipedia.org/wiki/Overlay_network

[10] OverSim: The Overlay Simulation Framework

http://www.oversim.org/

[11] Petar Maymounkov, David Mazi`eres, Kademlia: A Peer-to-peer Information

System Based on the XOR Metric”

http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf\

[12] Portable Executable, (2008). Retrieved Oct/20,2008, from

http://en.wikipedia.org/wiki/Portable_Executable

[13] Pietrek Matt “Peering Inside the PE: A Tour of the Win32 Portable Executable File

Format”

http://msdn.microsoft.com/en-us/library/ms809762.aspx

[14] OllyDbg (2000). Retrieved Oct/09, 2008, from

http://www.ollydbg.de

49

[15] Interactive Disassembler, (2008). Retrieved Oct/21,2008, from

http://en.wikipedia.org/wiki/Interactive_Disassembler

[16] GetModuleHandle Function. Retrieved Nov/1,2008, from

http://msdn.microsoft.com/en-us/library/ms683199.aspx

[17] CreateToolhelp32Snapshot Function. Retrieved Nov/5,2008, from

http://msdn.microsoft.com/en-us/library/ms682489(VS.85).aspx

[18] http://msdn.microsoft.com/en-us/library/ms684834(VS.85).aspx

[19] http://msdn.microsoft.com/en-us/library/ms684836(VS.85).aspx

[20] http://msdn.microsoft.com/en-us/library/ms684320.aspx

[21] Install Microsoft Loopback Adapter. Retrieved Nov/5,2008, from

http://technet.microsoft.com/en-us/library/cc708322.aspx

[22] Executable compression

http://en.wikipedia.org/wiki/Executable_compression

[23] TrendMicro™ HijackThis™ Overview

http://www.trendsecure.com/portal/en-US/tools/security_tools/hijackthis

